10.9 and 10.10: Bounds and Applications of Taylor Series

Taylor's Formula. If f has derivatives of all orders in an open interval I containing a, then $\forall n \in \mathbb{N}$ and $\forall x \in I$,
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$,
where

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x
$$

We call $R_{n}(x)$ the remainder of order n or the error term for the approximation of f by $P_{n}(x)$ over I. If $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty \forall x \in I$, we say that the Taylor series generated by f at $x=1$ converges to f on I, and we write

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

The Remainder Estimation Theorem. If there exists an $M \in(0, \infty)$ such that $\left|f^{(n+1)}(t)\right| \leq M$ for all t between x and a, including x and a, then the remainder term $R_{n}(x)$ in Taylor's Theorem satisfies the inequality

$$
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}
$$

Furthermore, if this $\left|f^{(n+1)}(t)\right| \leq M \forall n \in \mathbb{N}$ and all t between x and a, then the Taylor series converges to $f(x)$ on I.

Examples.

1. Show that the Maclaurin series of $f(x)=e^{x}$ converges to $f(x)$ for all $x \in \mathbb{R}$.
2. Show that the Maclaurin series for $\sin x$ converges for all $x \in \mathbb{R}$.
3. Show that the Maclaurin series for $\cos x$ converges for all $x \in \mathbb{R}$.
4. Find the first few terms of the Maclaurin series for $\frac{1}{3}(2 x+x \cos x)$.
5. Find the first few terms of the Maclaurin series for $e^{x} \cos x$.
6. For what values of x can we replace $\sin x$ by $x-\left(x^{3} / 3!\right)$ with an error of no greater than 3×10^{-4} ?

The Binomial Series.

For $-1<x<1$,

$$
(1+x)^{m}=1+\sum_{k=1}^{\infty}\binom{m}{k} x^{k},
$$

where we define

$$
\binom{m}{1}=m, \quad\binom{m}{2}=\frac{m(m-1)}{2!},
$$

and

$$
\binom{m}{k}=\frac{m(m-1)(m-2) \cdots(m-k+1)}{k!} \quad \text { for } k \geq 3
$$

Notice that, if $m \in \mathbb{N}$ and $0 \leq k \leq m$ is an integer, then the binomial coefficient $\binom{m}{k}$ is given by

$$
\binom{m}{k}=\frac{m!}{k!(m-k)!} .
$$

Examples.

1. Find $\binom{-1}{1}$ and $\binom{-1}{2}$.
2. Represent $\sqrt{1+x}$ as a binomial series and use the Alternating Series Estimation Theorem to get bounds for the Taylor polynomial of order 2.
3. You can squeeze even more from the binomial series with $m=\frac{1}{2}$ to get bounds for $\sqrt{1-x^{2}}, \sqrt{1-\frac{1}{x}}$ and many other Taylor series.

Evaluating Nonelementary Integrals and Indeterminate Forms. Examples.

1. Express $\int \sin x^{2} d x$ as a power series.
2. Estimate $\int_{0}^{1} \sin x^{2} d x$ with an error less than 0.001 .
3. Integrate term-by-term the power series for $\frac{1}{1+x^{2}}$ to show that $\tan ^{-1} x=$ $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ for $|x| \leq 1$. By setting $x=1$ in this power series expansion we get a series representation of $\frac{\pi}{4}$ called Leibniz's formula.
4. Evaluate $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$.
5. Find $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.
